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Abstract-Conditions which can guarantee the global stability and uniqueness of the solution to a
bone remodeling simulation are derived using a specific rate equation based on strain energy
density. We modeled bone tissue as isotropic with a constant Poisson ratio and the elastic modulus
proportional to volumetric density of calcified tissue raised to the power n. Our remodeling rate
equation took the rate of change of volumetric hard tissue density ~s proportional to the difference
between a stimulus (strain energy density divided by volumetric density taken to the power m) and
a set point. In previous studies we defined state variables which are conjugate to the remodeling
stimulus, and the function which acts as a variational indicator for the remodeling stimulus. In this
study, we use the properties of this variational indicator to establish the stability and the uniqueness
of the solution to the remodeling rate equations for all possible density distributions. We show that
the solution is the global minimum of a weighted sum of the total strain energy and the integral of
density to the power m over the remodeling elements. These results are proven for n < m, and we
show that taking n > m will eliminate the possibility that a unique solution exists.

INTRODUCTION

Although people and animals exist in a wide variety of sizes, a degree of similarity in bone
structure exists in many vertebrate bones (Bertram and Biewener, 1992; Biewener, 1989;
Alexander et al., 1979). A comparison of bone structure with the expected loading which
bones are expected to support suggests that. subject to the requirements placed on animal
size and shape by natural selection, mechanical factors are important in maintaining bone
structure throughout adult life. This is the basis for an often-cited concept known as Wolff's
Law (Wolff, 1986). As reviewed by Roessler (1981), Wolff was convinced that bone is able
to produce the best possible structure for a given amount of material, as was Roux, a
contemporary. These early investigators and others established the idea that heavily loaded
regions of bone are dense, and that less loaded regions are more porous. Also, bone was
noted to become more dense if overloaded, and less dense if unloaded.

Bone is generally of two types: Cortical and cancellous. Cortical bone is the dense outer
layer in the mid-shaft of bones. Cancellous bone, the material which supports nearly all
weight-bearing animal joints, resembles an open celled foam (Netter, 1987; Warwick and
Williams, 1973) and has elastic properties which depend heavily on the volumetric density
of calcified tissue present (Carter and Hayes, 1977). In many cases, the distinction between
the two tissues is arbitrary, since cortical bone can become porous, and cancellous bone
can become very dense. In many bone remodeling studies, and in ours, the distinction
between cancellous and cortical bone is not explicitly made, and where the remodeling
study predicts high density, we expect cortical bone.

Bone formation and remodeling is mediated by many biological factors in addition to
mechanical stress. Although the general character of the responses to non-mechanical
factors is known, the interaction between such factors and stress is not well known (Brown
et al., 1990). In this study, we will not consider biological factors. Thus we assume either
that the influence of biological factors is small, or that the biological factors are applied
evenly over the region of interest, and do not substantially interact with the stress-mediated
response ofthe tisue. We do not have direct evidence to support these assumptions. however.
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Bone shape and size is determined by many biological factors which we cannot hope to
adequately mimic using a purely mechanical model (Bertram and Swartz, 1991). Although
Bertram and Swartz acknowledge a substantial role for stress in bone remodeling, they
detail many biological effects which can confound bone remodeling experiments. The
mechanical effects discussed in this paper are therefore restricted in their application to
adult adaptation, since we have concentrated on remodeling simulations in which bone
shape is held fixed, and bone density is allowed to vary with time.

Numerical simulations of bone remodeling have shown qualitative agreement with the
natural bone density distribution, but have shown a number of problems with stability
(Carter et al., 1989; Weinans et al., 1989, 1990, 1992; Weinans, 1991). These problems
indicate that the numerical methods need improvement, and they also show that the
dynamics of the postulated remodeling feedback mechanisms need more careful study. In
recent studies (Harrigan and Hamilton, 1992a; Weinans et al., 1992) the remodeling rate
equations used by many investigators have been shown to be unstable. Modifications have
been used to make the simulations stable prior to these studies, and other possibilities for
stable simulations were arrived at. Huiskes et at. (1991) and Beaupre et al. (1990) have
used a "dead zone" around the equilibrium value of the remodeling stimulus, so that the
rate of change of density due to stress changes is zero for a range of stimuli. The dead zone
accounts for the observations that small changes in the stress state in a bone do not seem
to generate a remodeling response. This procedure produces results which agree qualitatively
with experimental results, but the use of a dead zone (with zero slope) thwarts a unique or
an optimal solution. Harrigan and Hamilton (1992a) have proposed modifying the stimulus
according to a derived stability limit, so that a zero-slope dead zone is not necessary.

The approach taken in this and previous studies is conceptually different from many
in the literature, in that the global behavior of the remodeling simulation is used to provide
a limit on the stimulus to be used in the local remodeling rule. This contrasts with many
prior studies in which a local stimulus is proposed based on mechanical concepts, and the
behavior of the global structure with time is studied. We have been able to take this
approach because we have found a direct link between the local and global behavior of a
remodeling simulation.

Although the numerical simulations in the literature can represent many facets of the
natural response to stress, these simulations generally operate by time stepping a rate
equation, without assessing whether the simulations are stable or optimal in a certain sense.
Also, since an optimization function is not derived for many of these simulations, the
questions of solution uniqueness and path dependence are left unanswered. Also, the
connection between a common medical interpretation ofWolff's Law of bone remodeling­
that bone is an optimal structure-and the remodeling rate simulations had not been made
until recently (Harrigan and Hamilton, 1992b; Kuiper et al., 1992; Huiskes and Kuiper,
1993).

In this paper, we build on the results of two recently published studies in which we
derived the form of the state variables needed to make a specific bone remodeling stimulus
part of an optimization routine (Harrigan and Hamilton, 1992c), and we derived the form
of the indicator function being optimized by the remodeling rate equation (Harrigan and
Hamilton, 1992b). Using this information, we show here that if a simple condition is
satisfied, then (a) the remodeling rate equation developed using the state variables used
previously is stable for all possible density distributions; and (b) the solution of the
remodeling rate equations for an equilibrium density distribution is unique, since the
remodeling rate equation arrives at a global minimum of the indicator function in this case.
We then show that if this condition is not satisfied, the results will be unstable and non­
unique.

These results follow directly from the remodeling rate equations, and are thus restricted
in their applications to situations where the rate equations apply. Thus, the concept of bone
as an optimal mechanical structure is primarily a mathematical convenience used here to
assess solution stability and uniqueness. We do not assess the generation of bone shape
during growth using this formulation, so we can not make any statements regarding the
optimal nature of bone shape.
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METHODS
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In this paper, we use the mathematics associated with fine element analysis to prove
that we can obtain a unique stable solution for a particular bone remodeling rate equation.
In the development, we assume that the volumetric density of calcified bone, and thus the
elastic properties of the tissue, are constant within a finite element. We assume that the
finite element mesh chosen is the same throughout the simulation, and thus we do not assess
shape changes explicitly. Changes in the shape of the resulting structure due to element
densities becoming zero are allowed, however.

Using the direct stiffness finite element method, we add local element stiffness matrices
together to form a global stiffness matrix (Bathe, 1982). In the development for this paper,
we write the element matrices in global coordinates. The element matrix indices span the
range of global coordinate indices, with non-zero entries only in the positions in which the
global coordinates couple to the "local" element coordinates. Thus, we never refer to local
coordinates for the element stiffness matrices we use here. Also, implied summation over
repeated indices is only used when the repeated indices are subscripts that follow dis­
placements or stiffness matrices. When we require summation over elements, we use a
summation sign. We will also use the subscripts f, g, p and q to indicate particular (global)
degrees of freedom. The subscripts and left superscripts e and s refer to element number.
A right superscript (used here only on density) indicates exponentiation. Thus, we have
restricted our notation to maintain clarity in the operations we intend.

We assume isotropy, a material Poisson ratio which is constant, and a power law
relationship between density, <P, and elastic modulus (Carter and Hayes, 1977), i.e.

(I)

with <P the volumetric density, n the material exponent, usually taken as 2 (Rice et af., 1988)
or 3 (Carter and Hayes, 1977). This results in a material property matrix [C] which we
express as

(2)

with [Co] the material property matrix for unit volumeric density (Bathe, 1982). Using this
matrix in a standard finite element formulation for element stiffness matrices yields

(3)

with the left superscript e indicating the element, •Lrg the element stiffness marix and •Krg
the element stiffness matrix for unit density. We can thus write the global stiffness matrix
K in terms of density as

N

Krg = L <p~'Krg+cKfg,.= I

(4)

with 'Krg the part of the stiffness matrix which remains constant during the remodeling
simulation (e.g. an orthopedic implant).

The average strain energy density within the element, ''P, for a given displacement
solution u is

(5)

with V. the element volume. We assume the tissue stimulus for bone remodeling is
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(6)

with the exponent m being a material constant. This equation reflects the way that the
microstructure magnifies continuum-level stresses, strains and strain energy density. That
is, the stresses, strains and strain energy density at peaks within the microstructure are
higher than the continuum-level variables (Beaupre et al., 1990). Since we are not making
specific assumptions about the physical stimulus for remodeling, we chose this relationship
with the exponent m left as a parameter.

In a previous paper (Harrigan and Hamilton, 1992c), we showed that changing the
state variable used in the remodeling equation allows that equation to be part of an
optimizing process. By using density to the power m [the exponent in the denominator of
eqn (5)] we can define a variable Y as

Y = 4Jm

and by taking the rate equation to be

or, more explicitly,

oy y(n-ml/m(u eK u)
V _e = e f fg g _ 'P V

e at 2 0 e

(7)

(8)

(9)

we can satisfy the requirements for an optimizing function. Note that when y = 0, 4J = 0,
and when y = I, 4J = I. Since 4J is the volumetric density of hard tissue, we add to our
simulation the restriction that both 4J and yare between 0 and I. Fully dense bone elements
can thus simulate the development of cortical bone, and empty elements can simulate
complete resorption. For reference, we can write the global stiffness matrix in terms of y as

N

K -" n/meK +cKfg - L... Ye fg fg'
e= I

(10)

The connection between the remodeling rate equations used and an optimizing function
is very similar to the connection between Newton's laws and the energy in a structure.
Finding the displacements in an elastic structure that satisfy the equations of equilibrium
is equivalent to finding the displacements that minimize the stored elastic energy. By
analogy, there is a connection between finding the bone density distribution that is a
stationary point for a "remodeling potential" function and finding the density distribution
in which the rate equations predict no change in density with time.

In a sense, we have shown that there is a function H such that dH = :E(FedYe), with
Fe the remodeling stimulus in eqn (8) but there is no function G such that dG = :E(Fed4Je)
except for the special case where m = I. That is, if H is similar to an energy function, Ye is
the state variable which is energetically conjugate to Fe.

Put another way, we can assert that if there is an indicator function that measures
some property of the density distribution, and results in a specific numerical value, then we
can write that function as

H(y I, Y2, Y3, ... ,Yn)' (11)

If the remodeling rule used finds stationary points of this indicator function, then we can
relate the remodeling rule to the indicator function by
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Thus we can show that

101

(12)

of(y;) 02H(Y.,.··, Yn)
---ay; = - OY;CJYj

02H(y., ... ,Yn) of(Yj)

OYjOYi =~
(13)

and we can derive a remodeling rule from an overall indicator function on density if and
only if the derivatives of that rule follow this equation.

In a previous study, we have shown that eqn (13) is satisfied for the remodeling rule
above, and in another previous study (Harrigan and Hamilton, 1992b) we found that the
indicator function H was

with

N u-,yn/meK +cK )u
HI = L J\. Ig Ig 9

e= I 2

the total strain energy in the structure (bone and possible implant), and

N

H2 = 'Po L VeYe
e= I

(14)

(15)

(16)

equal to 'Po multiplied by the integral of Y over the remodeling elements. Notice that H 2 is
not proportional to the total mass of calcified tissue unless m = 1. Minimizing total tissue
mass will result in a different remodeling equation unless m = 1.

Notice that the developments up to this point are valid for any values of nand m. This
derivation does not depend on any stability conditions, and thus the indicator function H
is as general as the remodeling equation.

Stability, global optimality and uniqueness
By using the remodeling rate equation, the defined optimizing functions, and the

derivatives calculated in Harrigan and Hamilton (l992c), we can prove that the simulations
are stable for all possible density distributions, and we can show that the solutions are a
global optimum. If we consider the rate equations as

OYe oH
v-= --=F(y)

e ot oYe e
(17)

with H defined as above, then eqn (8) results. We can write a perturbation equation in Y as

v o(oYe) = [0 (n-m)y«n-2ml/ml (u/K1gug) _y«n-ml/ml(u eK K-1sK u ) (!!..) y«n-ml/ml]oY
e ot es m S 2 e 1 Ip pq qg 9 m S S

(18)

which can be written as
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T = b (m-n)y«n_Zm)/m) (u/Krgug)
es es m S 2'

P = (!!-)y«n-ml/m)(u eK K- (sK u )y«n-m)/m)es m e f fp pq qg 9 s

(19)

(20)

and to prove stability for arbitrary distributions of y, we need to show that Tes + Pes is
positive definite for all possible distributions. This will be done below in the context of
global minimization.

Given the functions which are minimized by the remodeling rule, we can explore the
possibility that the minimum value of these functions is a global minimum, as opposed to a
local minimum. If there exists only one global minimum, then the solution to the remodeling
equations above is unique, and this can be important for remodeling simulations.

From calculus of variations, as applied to discrete problems (Ewing, 1985), a function
has a single minimum over a set of variables if it is convex everywhere in that set. The
mathematical definition of convexity for a function is H, which takes a multidimensional
set K as an input and results in a real number, is convex over the set K if, given two states
X and Y within the set K,

H(X)+r(H(Y)-H(X)) ~ H(X+r(Y-X)) (21)

for 0 < r < 1. We will take the optimization function here as (mln)H I +Hz. Notice that Hz
is linear in Y.. and thus satisfies the equality in this relationship by default. If, as in this
case, the second derivatives of H are continuous, then this inequality is satisfied if

(22)

with Xi the components of X and (Xi components of any vector in Euclidian N-space. This
condition is in fact equivalent to requiring that the symmetric matrix, with components i,j
given by the second partial derivative term above, is positive definite (Strang, 1986). Given
the function H as defined above for bone remodeling, this mixed partial derivative matrix
is simply the matrix Tes +Pe,·.

Thus we can prove that finite element simulations which use eqn (8) as a basis for
stress-related bone remodeling are stable and have a unique solution which minimizes
(mln)H( +Hz if we can prove that eqn (22) is satisfied for all possible density distributions.
This will establish the results for approximate finite element solutions, and we expect that
corresponding results can be derived for continuous analytical situations, but we have not
proven that.

RESULTS

Sufficient conditions
We can prove that this inequality is satisfied for all possible bone density distributions

as follows. The matrices Tes and Pes are

(23)

and
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F - (~)y«n-m)/m)(U eK K~ IsK u )y«n-m)/m)
es - m e f fp pq qg 9 s •
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(24)

If n is less than m, the terms in T es are diagonal and all positive, since the matrix product
corresponds to the strain energy stored in a particular element, and y is defined between 0
and 1. Thus, Tes is positive definite if m > n. Since the sum of two positive definite matrices
is positive definite, we can prove that eqn (22) is satisfied for all possible densities, and that
a global minimum is found, if Fes is positive definite for all possible values of y. In order to
do this, we will write the matrix sum by explicitly showing some of the implied summations
above. To prove that Fes is positive definite, we form the test as

with the summation over p and q left implied. Notice that all the terms which refer to
element e are to the left of K~ I , and all the terms which refer to element s are to the right.
Thus we can take the summation term in s over to the right of this summation as follows:

By rearranging the order of the terms in this expression, the left double summation can be
shown to be equal to the right. Thus, by rearranging the summations for elements and
degrees of freedom, we can show that given any vector IX, there corresponds a load vector
given by the expressions in the square brackets. Since Kpq is the global finite element stiffness
matrix, and is always positive definite (or positive semi-definite if enough elements have
zero stiffness), the inverse Kp-;' I is also positive definite, if the remodeling simulation is
restricted to elements with non-zero density. Thus, the inequality is satisfied for all density
distributions, with the restriction that only elements with non-zero density are considered
as part of the remodeling simulation. This means that the matrix Fes is positive definite for
all possible density distributions, and that the sum of F es and T es is positive definite if n < m.
Thus, H is convex for all possible density distributions, and has a unique minimum which
can be found by finding the equilibrium points in the time-dependent remodeling rate
equations, if n < m. As shown above, since T es and F es are positive definite, the bone
remodeling simulations run using eqn (8) in a finite element discretization are always stable
with n < m.

Necessary conditions
To see that the n < m condition is necessary, consider the sum T es+F es • If we factor

the sum as follows:

we can then identify c)esYe = Ys and factor the total stiffness matrix K~ lout of the sum in
parentheses. We then have

and we can physically identify some terms. Note that we imply summation over repeated
subscripts only in the stiffness matrices and the displacements, so that there are no implied
sums over e and s. The terms r:,Jrn eKpf and y;/m sK rq represent the actual stiffness matrices of

SAS 31:1-H
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elements e and s, respectively. Since the terms referring to element e are all to the left
of K;;; I and the terms referring to element s are to the right, we can now form the sum in
eqn (22) as

In order to prove that n < m is necessary for a convex function, we need only to prove
that there is at least one set of perturbations which make the sum negative for any density
distribution. We also require, for a stable distribution, that the inequality in eqn (22) holds
for progressively finer finite element meshes, i.e. as the number of elements becomes very
large. Consider the perturbation in which iXe = Ye' This will make the iXeYe- I factors above
unity, and we can recognize the sums over e and s as the overall stiffness matrix for the
modeling elements. Substituting Kpf-'Kpf for those summations [using eqn (10) above]
and rearranging terms yields

(30)

with N the number of remodeling elements. Clearly, as N becomes large, the first term on
the right will dominate. The matrix product in the first term on the right
(uf(Kpf-'Kpf)up) is the energy stored in the remodeling elements, and is always positive.
The last matrix product (ur' Krtu,) is the energy stored in the non-remodeling portion of the
structure, and the middle term on the right is harder to interpret, but seems to be a co­
energy of some sort. We expect the two rightmost terms to be similar in magnitude, and
we expect the terms to converge to constant values as the finite element mesh is refined.

This expression shows that if n > m, and a finite element mesh containing non­
remodeling elements is progressively refined, then the simulation may appear stable at
first, but will become unstable. Also, if the remodeling simulation contains no elements
which do not remodel, the simulation will always be unstable with n > m.

The implications for optimization with n > m and no remodeling elements are that
there are no purely minimal points, and that every stationary point for the optimization
function is in fact a higher-order saddle point, if the finite element mesh is sufficiently
refined.

Multiple loading cases
The influence of multiple loading situations on the results shown here can be given for

a simple characterization of these effects. If multiple load cases result in a stimulus which
is a weighted sum of their influence, as used by Huiskes et al. (1991), then the remodeling
rate equation becomes

(31)

with Pk a set of weighting factors to account for number ofloading cycles and loading rates.
Using this equation, the overall optimization function becomes a weighted sum of the strain
energy in a number of load cases, and the integral of Y over the remodeling elements. The
result of an analysis of global stability will be the same, since each load case will result in
a corresponding strain energy term, which will in turn result in a matrix of the form Tes+Pes.
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Thus, since the sum of any number of positive definite matrices is positive definite, we can
prove that the solutions to eqn (31) are globally stable and unique as well.

DISCUSSION

Although the results here are encouraging for a finite element simulation of bone
remodeling using eqn (8) or (31), the assumptions implicit in this formulation should be
reiterated. We have made these assumptions so that our model will capture the important
phenomena in bone remodeling, and for simplicity in the mathematical relationships used.
We have chosen these assumptions based on the available experimental data for bone
material properties. We do not intend the remodeling rule we use here to be a complete
description of bone remodeling in any sense. Rather, we propose this development as a
reference and a guide to further development of bone remodeling theories.

The material property assumptions are simplifications for the known mechanical
properties of cancellous bone, but capture the most important trend. We have assumed
elastic isotropy for bone tissue, and we have assumed that the Poisson ratio is independent
of density. Cancellous bone is known to be substantially anisotropic (Cowin, 1985, 1986).
The difference in elastic moduli in different directions in a specimen of cancellous bone can
be over 300% in some cases. This is a limitation on the applicability of the remodeling
theory developed here, but we have accepted this limitation in order to arrive at a tractable
result for this study.

The currently existing relationships which are meant to predict anisotropic elastic
coefficients for cancellous bone do not represent the experimental data in a substantially
more accurate fashion than the isotropic approximation we use here. Also, the anisotropic
characterization for cancellous bone given by relationships between mechanical test results
and structural anisotropy measurements is usually incomplete. Nine material property
coefficients are needed for an orthotropic material model and 27 for a fully anisotropic
material model, and experimental measurement of these coefficients is very difficult, since
human bone tissue is relatively homogeneous only over a distance of approximately 1 cm.
Thus, if we used the anisotropic relationships available in the literature, we would need
another set of assumptions to complete the material model, and we would substantially
complicate the analysis.

At this point, the choice for the left-hand side ofeqn (8) can be rationalized as follows:
We have shown that the remodeling stimulus is the rate of change of an indicator function
with respect to state variables Ye and we have defined the indicator function. It seems
appropriate that in a minimizing procedure, we should take

as in eqn (7).
The right-hand side of the remodeling rate equation used here is similar to many in

the literature. Our model differs from those of Huiskes et al. (1991) and Beaupre et al.
(1990) in the choice of the exponent m in the denominator. The a priori choice of m = 1
by Huiskes et al. is based on the idea that the strain energy per unit volume of calcified
tissue is the primary stimulus for bone remodeling. Beaupre et al. (1990) used a modified
stimulus which was an "energy stress", defined as the square root of the product of strain
energy density and elastic modulus. The exponent on density in the denominator of their
remodeling stimulus was taken a priori as 2, based on the idea that cancellous bone strength
was proportional to the square of density. By contrast, we have initially left the exponent
m undefined and then restricted it based on the physical hehavior of the bone remodeling
simulation itself. Thus we have arrived at an a posteriori bound on m, as opposed to making
an a priori assumption.

Physically, taking m > n is an assumption that the bone structure in the adult is stable,
i.e. it remodels so that small perturbations in density (due to maintenance processes, for
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example) tend to decay away with time. Put another way, changes in bone structure which
increase exponentially with time do not occur.

The form of the equations used in bone remodeling reflects the qualitative observation
that increased bone loading leads to denser bone tissue, while decreased loading leads to
more porous tisssue. We have shown that our model produces equilibrium density dis­
tributions which are similar to those in the literature, and which are in qualitative agreement
with what would be expected (Harrigan and Hamilton, 1993). Thus, while we have shown
a substantial mathematical framework for the bone modeling rate equation we have studied
here, we have not proven that this model is a better predictor of bone remodeling. However,
given the substantial improvements in the mathematical characteristics of this model as
compared to others in the literature, we believe we can test this model in much more detail
than others have been tested. We also believe we can make improvements in this model in
a much more knowledgeable fashion, given the mathematical framework we have developed.

The proof that n < m is necessary for a stable remodeling simulation is similar to the
work of Weinans et al. (1992) and Harrigan and Hamilton (1992a), but is more general.
Weinans et al. showed a two component model which predicted limits for stability for a
number of bone remodeling rate equations. Harrigan and Hamilton showed instabilities
for a continuous one-dimensional problem (that of a composite beam). Here, we show that
the predicted instability in both of those prior studies is a general phenomenon, since, given
a proper discretization, any elastic structure can be effectively modeled with finite element
techniques.

CONCLUSIONS

In this paper, we have shown that the bone remodeling theory we have developed in
previous studies has solutions which are globally stable and unique. This model is built on
two assumed relationships which have been shown to be reasonable, given the information
available at this time. They are (a) an isotropic elastic material model with a constant
Poisson ratio, and (b) a remodeling rule with a stimulus which is strain energy density
divided by volumetric density taken to a power. These relationships are used within a finite
element formulation to show that the resulting solutions are stable with n < m for any
density distribution, and that the solutions obtained using the remodeling algorithm are
unique. We have also shown that simulations with n > m are generally unstable, and that
the solutions for equilibrium points are saddle points for a global indicator function.
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